ETL Implementation with Pentaho for Sales Data Visualization: A Case Study of Lunabit Beauty Bar

Authors

  • I Gde Eka Dharsika Program Studi Informatika, Fakultas Teknologi dan Informatika, Institut Bisnis dan Teknologi Indonesia
  • Ni Kadek Ayu Sulistiawati Program Studi Informatika, Fakultas Teknologi dan Informatika, Institut Bisnis dan Teknologi Indonesia
  • Ida Bagus Gede Sarasvananda Program Studi Informatika, Fakultas Matematika dan Ilmu Pengetahuan Alam, Universitas Udayana

DOI:

https://doi.org/10.69616/mcs.v2i2.239
\

Keywords:

ETL, Pentaho Data Integration, Data Warehouse, Sales Visualization, User Acceptance Test

Abstract

The rapid growth of information technology has encouraged businesses to optimize their data management through data warehousing and visualization. This study presents the implementation of the Extract, Transform, Load (ETL) process using Pentaho Data Integration (PDI) for the development of a sales data visualization dashboard at Lunabit Beauty Bar. The ETL process was carried out on sales transaction data originally stored in CSV format and later structured into a MySQL-based data warehouse. The stages of ETL include data extraction, transformation involving cleaning, integration, and validation to ensure consistency, and loading into the warehouse for further analysis. The visualization dashboard displays several analytical perspectives, including sales trends over time, sales performance by treatment, customer contributions, and treatment ranking from highest to lowest. To evaluate system performance and usability, a User Acceptance Test (UAT) was conducted involving 16 respondents, including the owner and staff. The results showed a satisfaction rate of 94%, indicating that the system met the company's needs in providing valid, clear, and easy-to-understand information. This research demonstrates that the integration of ETL processes with data visualization tools can support business decision-making, particularly in monitoring sales performance and designing promotional strategies.

References

D. Andriansyah, “Implementasi Extract-Transform-Load (ETL) Data Warehouse Laporan Harian Pool,” J. Tek. Inform., 2022, https://doi.org/10.51998/jti.v8i2.486.

R. F. Syafariani, D. Ginanjar, and E. N. Hayati, “Website-Based Information System on Drug Purchases and Sales at Pharmacy,” J. Teknol. Inf. Dan Pendidik., 2022, https://doi.org/10.24036/jtip.v14i2.448.

K. Suryadana and I. B. G. Sarasvananda, “Streamlining Inventory Forecasting with Weighted Moving Average Method at Parta Trading Companies,” J. Galaksi, vol. 1, no. 1, pp. 12–21, 2024, https://doi.org/10.70103/galaksi.v1i1.2.

K. Y. Cheng, S. Pazmino, and B. Schreiweis, “ETL Processes for Integrating Healthcare Data – Tools and Architecture Patterns,” 2022, https://doi.org/10.3233/SHTI220974.

W. S. Fana, R. Sovia, R. Permana, and M. A. Islam, “Data Warehouse Design With ETL Method (Extract, Transform, and Load) for Company Information Centre,” Int. J. Artif. Intell. Res., 2021, https://doi.org/10.29099/ijair.v5i2.215.

O. Kharakhash, “Data Visualization: Transforming Complex Data Into Actionable Insights,” Autom. Technol. Bus. Process., 2023, https://doi.org/10.15673/atbp.v15i2.2520.

T. A. Saputri, S. Muharni, A. Perdana, and S. Sulistiyanto, “Pemanfaatan Google Data Studio Untuk Visualisasi Data Bagi Kepala Gudang UD Salim Abadi,” Ilkomas, 2022, https://doi.org/10.33096/ilkomas.v2i2.1067.

T. Tumini and E. S. Subekti, “Implementasi Business Intelligence Untuk Menganalisis Data Proses Manufaktur Menggunakan Google Data Studio,” J. Ilm. Tek. Inform. Dan Komun., 2023, https://doi.org/10.55606/juitik.v3i3.625.

? ISSN (print): 3063-4822, ISSN (online): 3063-4997

MCs Vol. 2, No. 2, December 2025 : 73 – 82

B. Yanto, W. E. Putra, and F. Erwis, “Visualization of Covid-19 Data in Indonesia in 2022 Through the Google Data Studio Dashboard,” J. Ict Apl. Syst., 2023, https://doi.org/10.56313/jictas.v2i1.237.

M. R. Sholahuddin, F. Atqiya, H. Faridah, and N. Nurianti, “Google Data Studio Implementation for Visualizing West Java Province Toddler Stunting Data,” Ijics (International J. Informatics Comput. Sci., 2022, https://doi.org/10.30865/ijics.v6i2.4696.

F. A. Syam, Y. Darmayunata, and L. L. Van FC, “Pelatihan Pemanfaatan Aplikasi Google Data Studio Untuk Visualisasi Data Di SMK Teknologi Riau,” J-Coscis J. Comput. Sci. Community Serv., 2022, https://doi.org/10.31849/jcoscis.v2i2.8882.

F. N. Hayati, M. Silfiani, and D. Nurlaily, “Pemanfaatan Google Data Studio Untuk Visualisasi E-Rapor Siswa Sman 2 Balikpapan,” J. Pengabdi. Kpd. Masy. Itk, 2021, https://doi.org/10.35718/pikat.v2i2.619.

R. A. Atmoko, S. R. Asriningtias, and M. B. Persijn, “Training on Using Google Data Studio for Real-Time and Interactive Management of Beji Village Data and Information,” J. Pengabdi. Masy. Bestari, 2022, https://doi.org/10.55927/jpmb.v1i8.1710.

A. Prakash, “Pre-Processing Techniques for Preparing Clean and High-Quality Data for Diabetes Prediction,” Int. J. Res. Publ. Rev., 2024, https://doi.org/10.55248/gengpi.5.0224.0412.

X. Ding, H. Wang, G. Li, H. Li, Y. Li, and Y. Liu, “IoT Data Cleaning Techniques: A Survey,” Intell. Converg. Networks, 2022, https://doi.org/10.23919/ICN.2022.0026.

Published

2025-12-26